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1 Introduction

In recent years, there has been rapid research into ap-
plications of deep neural networks to brain biometric
data. Most work has been done on the classification of
neurological disorder by evaluating abnormalities in
either MRI or EEG data, but there has been little focus,
in the conventional sense or with novel deep learning
methods, on the prediction of higher-order behavioral
cognition. Our goal is to predict over an array of be-
havioral metrics (CVLT, LPS, RWT, TAP, TMT, WST,
DSM-V) using an array of 3D Deep Convolutional
Neural Network (DCNN) approaches paired with an
EEGNet-based 2D convolutional model to interpret
both MRI and EEG data. We hypothesize that a deep
learning model will be able to detect and interpret
structures and activities in the brain that indicate cer-
tain behavioral characteristics.

2 Methodology

Our approach to this kind of multimodal model was
to bifurcate our final model into its constituent EEG
and MRI model parts; then, we develop those parts
optimally before combining latent outputs for those
models into our combined model. This way, we can
experiment with lightweight EEG models more easily,
however we assume here that optimally performing
constituent models will create an optimally perform-
ing joint model.

2.1 Data and Preprocessing

We collect data from the Max Planck Institute in Lep-
zig, Germany from 228 healthy participants. Our data
contains paired MRI, EEG, and behavioral data across
an array of 27 behavioral metrics.

We first standardize the length of each EEG readout
by truncating each end of potentially faulty data, and
filter any patients that don’t have the necessary 60
electrical readouts that our models require. We also
pass a low-pass filter (50 Hz) to remove excess noise
from the EEG data.

With MRI data, we again filter participant data
which doesn’t have the necessary resolution require-
ments. Because we use transfer learning for MRI data,
we take two additional approaches to preprocessing
3D MRI data into 2D data interpretable by a 2D trans-
fer learning model. Our intuitive approach was to split
the data along each axis (XYZ) and pass each set of
slices through VGG, or a VGG-like feature extraction
model. This was repetitive (tripling the raw amount of
data) and computationally inefficient (requires VGG
passed over each slice of each axial direction). We
settled on Axial-Coronal-Sagittal (ACS) convolution,
which instead leverages transfer learning color chan-
nels to process the local pattern for each convolution
of all three axial directions (Yang et al., 2021).

With behavioral data, we extract all relevant tests,
then take representative statistics from those tests,
then standardize those scores across the population of
samples. Post preprocessing, we were left with 118
valid samples of complete, paired patient data.
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2.2 EEG Model

There have already been several studies that have
developed great EEG-specific DCNN models, the
most popular of which being EEGNet (Lawhern et al.,
2018) (Guleva et al., 2020)

Figure 1: EEG Model Architecture

Unlike previous applications of EEGNet, primarily
for diagnoses, we are not classifying, so we modify
the head of the architecture with a light dense model
head. We standardize earlier so we can apply sigmoid
to this final layer and ensure that all model predictions
will always lie within the reasonable domain of our
model. The drawback to this, of course, is that our
model then relies on knowledge of the distribution of
the general population–in our case, we disregard this
and substitute it with our data distribution.

We also try custom CNN architectures and using
LSTM units. To the former, EEGNet is already the
state-of-the-art, so we decided to use that for the best
chance of success. Intuitively, it makes sense to use re-
currency for sequential data like EEG. Although this
has been done, it is difficult to structure a model that
is half recurrent and half non-recurrent, since we must
maintain some sort of joint latent space that can op-
erate over a time series. Further, it makes more sense
to use convolution on periodic data, since ideally the
size of the kernel is able to segment each period and
thus learn interpretations of individual cycles.

2.3 MRI Model
As briefly mentioned, the MRI model was our in-
tended point of innovation. Conventional approaches
include only convoluting over dominant layers of
MRI scans, but these have consistently failed to pre-
dict behavior (Blue, 2020) (Elliott et al., 2020). There-
fore, we attempt several novel approaches.

We developed a 3D DCNN for processing all MRI
data concurrently by modifying VGG19 for 3D input,
but this was too memory and processor hungry to train
with conventional computing resources. Our subse-
quent approaches involve slicing the MRI input data.
We first pass all slices through VGG-like models, but
this also too was too resource intensive to train in a
reasonable amount of time. Further, this introduces
redundancies in the data (requiring that each pixel
be interpreted three times) and disallows model 3D
spatial awareness like we set out for. We settled on the
ACS approach to concurrently pass in axial, coronal,
and sagittal local layers. We also tried several architec-
ture structures within our transfer learning attempts,
namely VGG and Inceptionv3 (Google). Because the
structures that theoretically dictate behavior may be
of variable size, and due to outright performance im-
provements for both our task and feature recognition
in general, we settled on using Inception modules to
construct our MRI model.

Figure 2: Inception Module

Inception modules concurrently pass information
through 4 convolutional steps, each of which con-
tains a different feature size. After concatenating,
Inception-like models can implicitly learn the “most
informative” size.
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Figure 3: MRI Model Architecture

2.4 NeuroVision
The NeuroVision architecture is essentially the union of the MRI and
EEG model architectures. We fuse the latent space prior to the head of
each model with a consistent join size (20 neurons). We also include
auxiliary outputs, which allow our model to ensure that meaningful
information is being extracted within earlier layers of the network,
thus preventing vanishing gradients.

Figure 3: NeuroVision Architecture
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3 Results
Because there is no comparative network that evalu-
ates over continuous behavioral metrics, we elect to
use control models to benchmark model performance.
These include a “center model” (guesses center of
the rescaled data), “mean model” (guesses the data
mean), “median model” (guesses the data median),
“guess model” (guesses a random datapoint from the
training dataset), and a simple neural network. Our
NeuroVision model, including the constituent models,
failed to outperform control models by a statistically
significant amount.

Figure 3: General performance of NeuroVision
against controls

There could be several reasons for not achieving
improvement over control.

Because we haven’t yet identified a precise map-
ping between behavior and structures and activities in
the brains scientifically, it could be the case that it is
impossible to create such a mapping altogether with
available brain biometric data.

Further, we only have 30 validation samples, and so
discrepancies found between our model and control
performance are difficult to decisively say are signif-
icant. It could also be that more data for our model,
like has been shown in feature recognition tasks in
other settings, may demand significantly more data

Figure 4: Best five and worst five categories of perfor-
mance of NeuroVision against controls

Figure 5: Sample of statistical significance of Neuro-
Vision performance against control

to be able to properly identify complex relationships
in the data. Another issue may be the sample, which
is entirely from Lepzig, Germany, which may be re-
sponsible for some reduction in variance in behavioral
outcomes in the data.

Another limitation is our data representation. We
chose to use MRI data, which in our case has resolu-
tion of 256×256×256. It is entirely possible that the
structures that we would need to locate to determine a
mapping to personality are much finer than this avail-
able resolution. We also make no attempt to bake in
inductive bias into our dataset regarding known ar-
eas of the brain responsible for higher-order thinking,
namely the prefrontal cortex, by excluding peripheral
areas. Lastly, our use of EEG data may be misleading
for our model, as other measures of activity such as
MEG are known to be more representative of deeper
brain activity.
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4 Challenges

How do we create a model on 3D MRI imaging
data?

This is a problem that we decide to attack with
two approaches. Our initial approach was to create
a 3D implementation of existing cutting-edge 2D
DCNN architecutres, but as we mentioned this hasn’t
worked for training reasons. We also try a replica of
cutting-edge 2D convolutional architectures for fea-
ture matching (namely, VGG’s models). A second
approach though is a transfer learning one, where
we ACS (axial-coronal-sagittal) preprocess data with
some downsampling to compute optimal feature maps
from already successful architectures along three di-
mensions.

How do we evaluate performance of multimodal
models across a broad range of metrics?

We ideally evaluate the capacity of each compo-
nent of our model, alongside our conjoined model,
to predict across a full range of behavioral tests. We
accomplish this by partitioning our model and input
data, standardizing, and setting an objective function
as a minimization of Euclidean distance between each
(MRI, EEG, combined) model’s prediction and the
percentile vector for each patient. It is important to
note, then, that what constitutes as a “close proximity”
is not well defined–therefore, we create four “control”
models (which guess based on the mean, median, cen-
ter, and simple neural network predictions) in order
to determine the true efficacy of our model.

How do we handle the task of training such large
models?

Our MRI model prototypes are very large (10-50
million trainable parameters). While these models are
somewhat trainable on local machine resources, we
leverage cloud resources like Center for Computation
and Visualization’s Oscar and Google Cloud Platform
to greatly improve the speed at which we’re able to
train models.

How do you prevent exploding or vanishing gra-
dients in huge ( 90M) parameter models?

We take advantage of a structure pioneered by mod-
els like Google’s Inception by optimizing over ad-
ditional auxiliary outputs as well as the final loss
gradient calculation, such that we ensure that in inter-

mediate layers of the network there is no information
loss.

5 Reflection

Q: How do you feel your project ultimately turned
out? How did you do relative to your base/tar-
get/stretch goals?

A: We of course did not meet our goals (any accept-
able level of statistical significance) but that isn’t to
say the project was a failure. We used the most com-
prehensive and advanced methods possible to solve
an unsolved problem, and we believe that attempted
enough architectures and configurations to show that,
at least with data and resources currently available,
this problem isn’t yet solvable. It certainly would’ve
been cool to create a model that can “solve personal-
ity,” but we didn’t necessarily expect to be able to do
this.

Q: Did your model work out the way you expected
it to?

A: Our original idea going into the project is that
we’d have a joint LSTM and 3D convolutional model.
Of course, this isn’t how it turned out, and the process
of figuring out what works best was probably the most
rewarding part of the process.

Q: How did your approach change over time? What
kind of pivots did you make, if any? Would you have
done differently if you could do your project over
again? What do you think you can further improve on
if you had more time?

A: Through literature review and reasoning we first
changed the structure of the EEG part of the model
to an EEGNet modification. We had several pivots
regarding the MRI architecture, which were mostly
experimental before settling on Inception modules.
There are several things that we would like to go
back and try instead though, including finding higher-
resolution data and blocking off areas that we know
aren’t responsible for behavior, as mentioned earlier.
We only had access to cloud computing resources for
about a week and a half, so gaining access earlier
would be more of a priority if we could do this over–
with more time, we think we could’ve come up with
a more sophisticated and potentially better model.
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Q: What are your biggest takeaways from this pro-
ject/what did you learn?

A: As frustrating as it can be to spend weeks devel-
oping a model and not be able to achieve statistically
significant results, it was rewarding in some respect.
Character building, probably. We came in really hop-
ing to develop a model that could do something that
nobody else has been able to do before, with which
an explainable version could legitimately impact neu-
roscientific theory. But we couldn’t achieve this, and
that’s probably okay. Again, a combination of better
planning and swifter execution may have given us a
better chance at this, but as it stands, we are satisfied
with the learning experience alone.
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