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Abstract

The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology, notably the CRISPR-Cas9
system—an RNA-guided DNA endonuclease-introduces an exciting era of precise gene editing. Now, a central problem
becomes the design of guide RNA (gRNA), the sequence of RNA responsible for locating a bind location in the genome
for the CRISPR-Cas9 protein. While existing tools can predict gRNA activity, only experimental or algorithmic methods
are used to generate gRNA specific to DNA subsequences. In this study, we propose LIGAND, a model which leverages
a generative adversarial network (GAN) and novel attention-based architectures to simultaneously address on- and off-
target gRNA activity prediction and gRNA sequence generation. LIGAND’s generator produces a plurality of viable, highly
precise, and effective gRNA sequences with a novel objective function consideration for off-site activity minimization, while
the discriminator maintains state-of-the-art performance in gRNA activity prediction with any DNA and epigenomic prior. We
also apply pertubation analysis to understand and validate model performance. This dual functionality positions LIGAND as

a versatile tool with applications spanning medicine and research.

Code available at https://github.com/woody-hulse/LIGAND.

1 Introduction

The discovery of Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) technology has transformed the field of genomics,
providing a tool for precise gene editing and manipulation. While there
have been significant recent advances in the technology (Hillary & Ceasar
2020), the primary protein used is CRISPR-Cas9, an RNA-guided DNA
endonuclease. Initially discovered as a bacterial defense mechanism in the
adaptive immune system of archaea and bacteria, the editing capabilities
have proved revolutionary. The CRISPR system has been used to develop
treatments and cures for various illnesses—cancer, metabolic disorders,
infectious diseases, and genetic diseases—and advance agricultural
development (Nidhi et al., 2021).

The protein itself is directed to specific genomic sequences by a
guide RNA (gRNA). The gRNA sequence is critical to determining the
specificity of the CRISPR-Cas9 system, as it determines the ultimate
binding site of the protien. The sequence is designed as a complement
to the target DNA sequence, and a correct pairing leads to a proper
double-strand break at the intended location. Once broken, the cell’s repair
machinery allows for subsequent modifications.

While the CRISPR-Cas9 system is powerful, the design of gRNA is a
difficult, non-trivial task. One must design a sequence that is both specific
and effective, taking into account factors such as sequence composition,
chromatin structure, GC-content, secondary structure formation, and,
critically, potential off-site effects (Mohr 2016). Previous approaches use
either experimental methods (Zhang et al., 2015) to manually examine
or algorithmic methods to predict these effects. These methods are
either tedious or lack proper gRNA/DNA distribution coverage to be
applied in real-time experimental settings. Therefore, there is a strong
need for generalizable models that can synthesize gRNA and evaluate
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efficacy for given DNA sequences that yield both high specificity and
generalizeability.

There are several unexplored innovations to the problem approach
that we address with our problem, LIGAND. We create generative and
predictive models which leverage novel deep learning structures such as
attention and hierarchical convolution. These show promise for being
able to translationally relate sequential information better than simple
dense, RNN, or convolutional approaches. Reliance on techniques such
as convolution (Dipankar et al., 2022) and LSTM (Niu et al., 2023) only
may have trouble relating subsequences over long ranges or analyzing
more sophisticated structure within sequential data. Further, a generative
network hasn’t yet been adversarily trained; rather, a simple ground truth
is used to measure viability. This doesn’t reflect the nature of the problem:
for any particular DNA site, there will likely be several viable gRNA that
show high activity. Thus, there is a need for a generative model that can
creatively identify multiple potential gRNA with consideration of on- and
off-target efficacies.

2 Related Work
2.1 Relevant models

We identify two widely-cited models in the field that address similar
problems of predicting on- and off-site gRNA activity.

DeepHF (Daqi et al., 2019) is a design tool for specific Cas9 nucleases,
eSpCas9(1.1), SpCas9-(HF1) and wild-type SpCas9. For initial gRNA
activity prediction, the study one-hot encodes the sequence, which is
then embedded to create a new representation. These embeddings are then
passed into a bi-directional LSTM. The new encoding is then concatenated
with hand-crafted biological features and finally serves as an input to a

fully connection layer that creates a prediction score. The team used these
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scores to curate an augmented dataset of gRNA sequences for these three
Cas9 nucleases.

DeepCRISPR (Guohi et al., 2018) is a convolution-based deep-
learning online service developed for gRNA design. It uses epigenetic
information as well as base sequence information to predict gRNA activity
across a particular region. The first step of the process takes in .68
billion sgRNA sequences that are associated with epigenetic information
gathered across different cell types. The unlabeled sequences are then
used for pretraining an autoencoder to learn denoised encodings. These
encodings are then used as input for a convolutional neural network. The
entire hybrid neural network is then trained on a much smaller set of
labeled data, thus learning optimal weights for the CNN and also fine-
tuning weights for the autoencoder parent network. The resultant hybrid
neural network can then create predictions for on-target site activity and
the parent network was later reused with another CNN to do the same for
off-target site activity.

3 Methods
3.1 Data collection and preprocessing

We accumulate genomic and epigenomic data from the GRCh38 genome
representation from the NIH. We use this genome representation for
backward compatibility with in-class models and for its higher precision
at the nucleotide scale. Further, because gRNA binding is dependent
on factors such as histones, transcription factors, DNase, and other
parts of the epigenome, those are included in the generative input and
discriminative prior as well.

We selected CTCF-seq and H3K4me3 histone modification from
Chip-Seq data, chromatin opening information from DNase-seq data,
and DNA methylation from RBBS sequencing data. The data was
selected from the GM12878 cell line, all drawn from ENCODE and
NIH human genome databases. We binarize epigenomic signal values
due to their sparsity throughout the genome, thus choosing to give them
more importance when present. Further, noised pertubations on the input
would otherwise likely greatly impact the model’s interpretation of the
epigenomic context.

Figure 1. gRNA encodings Figure 2. Epigenomic encodings
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There are several data sources containing experimental gRNA activity
on certain parts of the genome (Pulecio et al., 2018). In particular,
we use the dbGuide database (Gooden et. al., 2021), a vast selection
of experimentally-validated guide RNAs for associated DNA sequences.
This database was selected in particular because of its breadth over the
distribution of nucleotide combinations for potential gRNA synthesis.
This is important, as it allows our trained model to gain a better
representation of a full distribution, limiting out-of-distribution issues and
fully unlocking the breadth of our generative approach.

3.2 Model design

A generative-adversarial network (GAN) is a model architecture which
employs two distinct models—a generator and a discriminator, to play a

two-player game for the generation of some data. The generator is tasked
with creating output to which the discriminator assigns a score of 1, while
the discriminator tries to assign scores of 1 to ground truth outputs and
assign 0 to generated inputs. This competing scheme is captured in the
objective function, where the loss function for each respective model is
adversarially oriented against the other.

LIGAND modifies the formulation of generative-adversarial structure
similar to a cGAN (conditional-GAN), where both the generator and
discriminator are provided with a DNA/epigenomic prior. The nature of
the predicted gRNA output (probability distributions over base classes)
presents unique challenges for framing a reasonable objective function,
and loss function modifications are key in capturing each use-case for
LIGAND.

The generator in LIGAND is tasked to generate gRNA given a DNA
and epigenomic signal input. The generator relies on a novel attention-
based architecture, leveraging the attention mechanism to find meaningful
relationships in DNA and epigenetic signal input. Our motivation for using
an attention mechanism here is to comprehend both the structures in DNA
and the latent contributors in gRNA, such as secondary structures and
GC-content, which contribute to the efficacy and soundness of the gRNA
design. The head of both models uses dense layers to generate a prediction
(and a final time distributed dense layer for the generator).

Figure 3. Generator architecture Figure 4. Discriminator architecture
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Both models consume the (n, 23, 8) array of one-hot encoded DNA
and signal epigenomic signals, which both use as a prior for their
respective prediction tasks. The generator outputs an (n,20,4) gRNA
prediction, where each column of the ith matrix corresponds to a predicted
probability distribution for the base at that position. For LIGAND’s
discriminator, convolution is applied over the concatenated and aligned
DNA/epigenomic/gRNA pairing to identify kernels which can properly
synthesize their compatibility. We then interpret the probability output of
the discriminator as an activity score for a particular gRNA on a given site
in the genome.

The DNA prior plays a pivotal role in LIGAND’s discriminator model.
As we will demonstrate, this DNA prior allows the discriminator to
generalize to entirely new segments of the DNA, allowing virtually any
DNA/gRNA pair to be tested for efficacy.

3.3 Training

For each network, we compute the loss as follows for any given
experimentally validated pair of DNA (Xpna) and gRNA (Xgrna) Or
non-pair (Xpna frand)):
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The interplay of loss functions establishes form a complex relationship
between the two sub-models of LIGAND. On one hand, like any GAN, the
generator tries to trick the discriminator while the discriminator tries to
catch the generator. On the other hand, the generator importantly relies
on the discriminator to guide its gRNA generation to minimize offsite
activity. These separate our model from other algorithmic methods, while
still being motivated by accuracy.

To train LIGAND, we begin with the DNA/epigenomic signal pairing.
Before passing this data into the generator, we apply a noise function
Xpna = XpNna +7N(0, 1) where + is a hyperparameter (y = 0.1). This
perturbation of the model inputs allows the generator to exercise more
creativity and improve robustness in the prediction of gRNA.

Next, we pass this data into the discriminator. Because our generator
outputs a probability vector with discrete ground truth values, we assign
Xgrna the properly ordered probability values of the generated output
to ensure we remain in distribution for the discriminator comparison.
Otherwise, comparing discrete ground truth values with distributions
would be trivial for the discriminator model. We then compute the loss
terms and backpropagate across both models.

4 Experiments and Results
4.1 Selection of model architecture

In order to evaluate the viability for different model architectures to
complete this task, we propose three formulations for each: a baseline
MLP approach, a convolution (and deconvolution) approach, and a
transformer approach. For comparison, we isolate each model to evaluate
it on generalized train and test data.

Figure 5. Generator validation loss Figure 6. Generator validation accuracies
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For the generator model, we ask each model to generate a gRNA
sequence from a given DNA/epigenomic location, comparing categorical
crossentropy loss against the ground truth gRNA and evaluating accuracy
based on the highest probability category. The MLP used is a simple,

Table 1. Metrics after 50 epochs across various architectures.

Generator Discriminator
Generator  Discriminator AUROC Accuracy Accuracy
MLP MLP 0.5041  0.225 0.318
ConvDeconv CNN 0.9762  0.888 0.718
Transformer CNN 0.9878  0.927 0.546
Transformer Transformer  0.9867  0.927 0.673

3 layer network with 64 dense units in each hidden layer. The
convolution/deconvolution network contains three convolution layers, a
latent dense layer of size 76, and three more inverse convolution layers.
The attention encoder architecture is identical to the generator architecture
above. The experimental results were fairly conclusive, showing that
the transformer formulation confirms our hypothesis that this particular
problem benefits from the existence of an attention map.

Figure 7. Discriminator loss

Figure 8. Discriminator accuracies
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To test potential discriminator architectures, we consider the set of
paired DNA/gRNA labeled with 1 as well as a set of perturbed gRNA
(3 base pair perturbations) with label 0. Our architectures are virtually
unchanged other than the end dense size of 23 — 1 and removing
the deconvolution layers from the convolution model (as detailed in
Methods). For this problem, the convolution discriminator shows the best
performance. It should be noted that the transformer is still a work in
progress, but as several constructions of it also failed to learn meaningful
discriminative relationships and the training process is about 5x longer,
we exclude it from consideration for now.

4.2 GAN accuracy validation

We next pair our attention encoder generator with the convolution
discriminator to create LIGAND, the combined model. We want to first
show that the accuracy for both models, though following a roughly
adversarial path (particularly the discriminator), is high. Accuracy for
the generator is the average value of the highest categorical base output
against the true base of the gRNA:

1 n k R
Ag = — Z Z(argmaink = argmax Yk )

nk =1

For the discriminator, we want to identify true gRNA while catching
generated gRNA:

n n

= % Z(l — roundD(Y;)) + % Z(roundD(Yi))
=1 =1
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As shown in Table 1, the transformer generator with a deconvolution
discriminator achieves the highest accuracy for the generator and the
highest Area Under the ROC Curve (AUROC) score. As outlined in the
methods section, our goal is for the discriminator to predict both gRNA
on-site activity and off-site activity. A higher AUROC score indicates
greater sensitivity to potential off-target effects (See Table 1).
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4.3 Evaluating on- and off-site efficacy

Next, we evaluate the performance of the discriminator in a more practical
setting. The original goal of the discriminator is to identify both on- and
off-target effects of DNA/gRNA pairings. We can evaluate this by treating
the discriminator as a sliding window over the DNA such that the resultant
discriminant value is the assessed probability of a given gRNA activity at
a particular site.

Activity; = D(Xgrna, XDNa; )

Plotting these activity scores for some examples, we can visualize that
the average activity score on test gRNA sequences is correctly located
at the bind site for multiple scales, as desired, typically with very low
probability of off-site effects.

Figure 11. Average predicted activity (1000bp)
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We can further use this method to look at specific gRNA examples to
analyze both the efficacy of the gRNA at the desired bind site as well as
potential off-target binding sites.

Figure 12. Validated examples Figure 13. Generated examples
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For gRNA design, we can apply LIGAND’s generator. By applying
different noise samples A/(0, 1) to a given gRNA input, we can generate
multiple candidate gRNA from the generator. Then, by applying the
discriminator, LIGAND provides a way to compare this gRNA for both
its on-target and off-target effects. In Figure 14, four example gRNA are
compared, where the highest activity and lowest off-target activities are
observed.

In practical applications, we often design gRNA to target specific
genes, particularly for gene knockout tasks. This involves cleaving
in specific regions while maintaining minimal off-site effects in
other regions. We can perform a search over a desired window for
generated gRNA and rank-order them with on/off-site efficacy using the
discriminator. Our model successfully outputs high-accuracy predictions
with virtually no off-site effects over large genomic regions.

Figure 14. Top-5 generated examples for example gene region
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4.4 Perturbation analysis

We can also perturb input to evaluate the differential effects of gRNA
design on predicted efficacy. By holding a target DNA site constant, we
took a known, matched gRNA strand and perturbed it on a base-by-base
resolution, allowing us to pass the perturbed gRNA and target DNA to the
discriminator and analyze differences in activity scores. The images below
show the activity graph across the DNA sequences for two original gRNA
strands and then the effects of perturbing them with the different bases, of
which only a few are shown. The heatmaps show that perturbations still
maintain the bind site as the region of highest activity on the DNA strand.
Some other details to be noticed are that the activity score at the target
is more sensitive to perturbations with the bases “T” and “C”, as that is
where we see the largest decreases in activity. Furthermore, the different
strands react differently to the perturbations, suggesting the importance of
each base is likely dependent on the larger context of the gRNA strand.

Figure 15. Example perturbation map
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5 Discussion

In this study we introduce LIGAND, a generative adversarial network
that addresses both gRNA activity prediction and gRNA generation
in concert. We determined a hybrid attention-based and convolutional
approach to generating and discriminating gRNA through experimentation
with subtasks, a result reinforced by the improved performance of this
union over other GAN formulations. We affirm discriminator accuracy
by observing the highest activity scores correctly concentrated around
the binding site of the DNA sequence. Additionally, perturbation analysis
enhanced the interpretability of LIGAND, highlighting our model’s robust
ability to identify influential gRNA variants.

As a demonstration of the practical application of LIGAND, we
demonstrate that noised generator priors can effectively stimulate a
plurality of output predictions, creating a multitude potential gRNA
candidates. From these, we are able to analyze activity with the
discriminator across the genome. These examples show that this quickly
training associated generative model could aid experimental researchers
in significantly narrowing down the search space for viable gRNA
sequences, including finding entirely novel sequences.

Looking ahead, we aim to complete a transformer discriminator,
although the incomplete version already outperformed the deconvolution
model in preliminary experimentation. We haven’t explored experimentally
verified off-target activity scores between mismatched gRNA and DNA
sequences in our model due to lack of experimentally validated datapoints
(relative to the scale of our gRNA reference database), anticipating
that it will provide additional insights into the model’s abilities and
interpretation.

We envision that this structure could extend beyond gRNA research
to other DNA editing endeavors, such as applying a similar model
to investigate gene expression prediction. By enabling unlimited and
effective gRNA design and identifying potential side effects, we hope
LIGAND can help to advance genome editing methods for research and
clinical applications.
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6 Contributions

Woody Hulse | Generator/discriminator architecture designs,
objective function engineering, DNA + gRNA
preprocessing, activity experiments, drafting
Pratham Rathi | Epigenomic preprocessing, interpretability/perturbation
analysis, figures
Taj Gillin | DeepCRISPR port, pertubation analysis, DNA + gRNA
preprocessing, code/architecture design
Zhen Ren | Analysis, drafting, literature review
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