ANT: Artificial Neural Topology

Woody Hulse, Jonah Schwam, Pavani Nerella, Ilija Nikolov, Taishi Nishizawa
Department of Computer Science
Brown University
Providence, RI, 02912
woody_hulse@brown.edu

Abstract—Rapid development in artificial intelligence (AI)
research has led to increasingly larger artificial neural networks
(ANNs). Some of the largest ANNs now have parameter sizes
that rival the neuron and synaptic counts of intelligent biological
organisms. However, these models have yet to demonstrate the ca-
pacity to reason in areas outside of their training domain, leaving
a gap in Al research efforts towards artificial general intelligence
(AGI). The combined inability of ANNs to replicate the complex
graph structure and temporal statefulness of information travel
in biological neural circuits we believe results in ANN hypothesis
classes that are too narrow for general reasoning. To address
both of these issues, we propose ANT, a time-state preserving
topological analogy to biological neural networks. In this paper,
we show the performance and task-generalizable capabilities
of ANT in reinforcement learning (RL) settings compared to
conventional artificial neural networks and discuss the viability
for larger-scale ANTSs for general reasoning tasks.

I. INTRODUCTION

The past several years have seen monumental research gains
in Deep Learning (DL). Recent advancements in artificial
neural network architectures such as attention-based models
[1], large-scale multi-modal models [2], and generative models
have pushed against, and in some cases past, human abilities
in certain tasks [3]. Paired with the availability of modern
compute resources like Graphics Processing Units (GPUs), the
scale of some of the largest ANNs nears the order of mag-
nitude of sophisticated biological agents' known to possess
complex reasoning behavior. Most models are only designed
to be capable within the scope of their training and design,
however some notable models, particularly LLMs and RL
embodied agents, have invigorated discussions on the bridge
between task-specific intelligence and general intelligence in
Al agents [4] [5]. These discussions, while in part predicated
on more philosophical ideas of self awareness, autonomy, and
consciousness, have been unable to conclude the necessary
human-like ability to reason—that is, the ability for an agent to
complete a task within an area it has not yet experienced [6].
To investigate the reason behind the lack of general reasoning
in ANNSs given comparable computational complexity requires
a consideration of how biological circuits function, as this
question is likely explainable by the characteristics important
in neurological circuits not present in artificial networks.

A one-to-one comparison between biological and artificial neural network
parameters is impossible due to the complex quantum-chemical nature of
neural circuits, so we consider the estimated synaptic count to be the number
of “parameters” in biological neural networks. This is by no means rigorous,
it is purely illustrative of scale (see Table 1).

TABLE I
PARAMETER COUNT OF A SELECTION OF NEURAL NETWORKS.
Name Type Parameters
Human (Homo sapiens) Biological | 1.5-10™ [7]
Cat (Felis catus) Biological | 1.0-10%3 [8]
Gemini 1.5 (Google) Artificial #2.4 . 1012
Claude 3 Opus (Anthropic) | Artificial | *2.0- 102 [9]
GPT-4 (OpenAl) Artificial | 1.0-10'2 [10]
Rat (Rattus norvegicus) Biological | 4.5-10'! [11]
GPT-3 (OpenAl) Artificial | 1.7-10 [10]
Mouse (Mus musculus) Biological | 1.0-10'2 [12]
Honey Bee (Apis mellifera) | Biological 1.0-10° [13]

*denotes unpublished estimates

There are several viable explanations for the gap in general-
ized cognitive ability between artificial networks and animals,
including the constraints on training regimes of most ANNs,
a lack of real-world exploration, insufficiently sophisticated
artificial neural network architectures, or poor search of the
parameter space, among others’. While each may contribute
in part to the observed disparity, we argue the importance of
two fundamental characteristics of biological neural networks
not present in ANNSs.

Statefulness as a property broadly pertains to the capacity
of a system to retain information about its previous states. In
neural circuits, this ability allows for the retention of data from
earlier sensory inputs or cognitive activities, which in turn
influences subsequent neural responses and behavioral outputs.
The dynamics of neural statefulness are complex and involve
various physical mechanisms, including short-term synaptic
plasticity, signal potentiation, and presynaptic excitability. For
instance, tetanic activation can temporarily enhance synap-
tic strength in a phenomenon known as augmentation. The
synapse exhibits statefulness by amplifying signals that follow
an initial activation signal [14].

Moreover, the graph-like network topology of biological
neural circuits facilitates multiple communication pathways
among neurons, enhancing redundancy and robustness in
neural processing. This structural complexity allows neural
circuits to explore a broader hypothesis space® compared to
layered ANNS, thus enabling the circuits to support and adapt

2LLater on, we’ll show that the formulation is flawed even in small parameter
spaces, showing that at least a significant component of the gap is explainable
by the formulation itself.

3By hypothesis space, we are referring to the space of all possible functional
mappings that a model can produce



to more diverse logical functions. Basset & Bullmore indicate
that specific graph structures, such as small-world networks,
are particularly efficient in balancing global and local connec-
tivity, which improves both the speed and accuracy of neural
communication [15]. The combined attributes of statefulness
and graph-like architecture contribute to the ability of neu-
ral circuits to undertake complex decision-making processes,
adapt to new environments, and learn from prior experiences.

The artificial neural topology is not a purported approxima-
tion of the exact function and behavior of biological neural
networks. We make no aim to reconstruct the complex elec-
trochemical interactions key in neuron-to-neuron interactions.
Rather, our goal is to construct a network with a hypothesis
class and hyperparameter space analogous to biological net-
works, particularly with respect to these state and topological
characteristics absent in conventional ANNSs.

II. RELATED WORKS

As artificial neural networks evolve, despite the advance-
ments, current ANNs still exhibit substantial deficiencies in
generalized reasoning and cognitive flexibility when compared
to biological systems. These deficiencies, we hypothesize,
stem not from the scale of neural parameters but from fun-
damental differences in network architecture and dynamic
information processing capabilities.

Foundational research by Azevedo et al. [7] provides a
detailed comparison of neuronal and nonneuronal cell counts
across different species, illustrating that human brains are
an isometrically scaled-up version of smaller primate brains.
This scaling is not purely in terms of size but also involves
complex interconnections and synaptic densities [7]. Further,
Herculano-Houzel et al. delve into the isotropic fractiona-
tor method and the cellular scaling rules for rodent brains,
establishing a quantitative baseline that directly informs the
structural complexity needed in ANNs to approach biological
realism [20], [21]. These studies suggest that the quest for
artificial general intelligence (AGI) may be less about size and
more about the intricate connectivity and stateful processing
found in natural neural networks.

In “Temporal Dynamics and Statefulness in Biological
Systems,” Menzel and Giurfa (2001) explore the cognitive
architectures of honeybees, demonstrating how even with a
relatively small number of neurons, complex behaviors and
decision-making capabilities can arise from highly optimized
neural circuitry [13]. This underscores the importance of state-
ful, dynamic interaction patterns in neural networks, which are
often absent in traditional ANNs.

Drawing from Ananthanarayanan et al., who performed
cortical simulations with a scale of 10° neurons and 10'3
synapses, it becomes evident that simulating complex neural
interactions requires not only computational power but also
an innovative approach to neural connectivity and architecture
[8]. Their work highlights the potential and the significant
challenges in mimicking the structure and function of large-
scale neural networks, which directly influences the design
philosophy of ANT.

The discussion of task-specific intelligence versus general
intelligence in Al has been a focal point of recent philosophical
and empirical debates. Mijwil et al. critically examine the
implications of large-scale language models on academic
integrity, reflecting on their capabilities and limitations in
generalized settings [30]. These discussions provide a back-
drop against which ANT is positioned, aiming to transcend
the typical task-specific optimizations of current ANNs by
embracing a more holistic, biologically inspired framework.

There are some network types that are designed with similar
approaches to ANTs. Hopfield networks, originally created
in 1977, are fully-connected state-preserving networks whose
aim is to “memorize” a particular binary network state in such
a way that, given random initialization, the state of each neuron
of the network will converge toward its memorized state. This
type of network is useful in understanding how memory is
stored in a neurological sense and some variants have found
modern applications as an auxiliary component of deep neural
networks [17]. However, these networks follow a strict fully
connected structure, only store binary information, and have
yet to be formulated in the context of RL.

An alternative approach to improved ANN performance is
the spiking neural network (SNN). This network type aims
to bridge the gap between biological and artificial neural
networks by mimicing neuron-neuron interactions in the brain.
Specifically, rather than sending continuous signals throughout
the network, SNNs send “spikes” between adjacent neurons
when an action potential is reached [25]. This strictly biologi-
cal approach relies on the foundation that only a strict artificial
reconstruction of biological neural networks will bridge the
performance gap. From a machine learning theory sense, how-
ever, SNNs are still highly restrictive in the hypothesis space.
Although they may include some of the properties not present
in other ANNs, with an “all-or-nothing” binary approach,
SNNSs still strictly mediate how information can propagate and
have many other issues such as nondifferentiability over the
spike discontinuities leading to incorrect gradients and often
requires neuromorphic hardware to run efficiently [18].

Our approach with ANT integrates these insights by de-
veloping a non-layered, stateful architecture that more closely
replicates the interconnected and ongoing processing capabil-
ities found in biological brains. By incorporating a graph-
based structure and dynamic information flow, ANT seeks
to foster a level of adaptability and cognitive flexibility that
conventional ANNs have yet to achieve. Our idea is deeply
rooted in a comprehensive understanding of biological neural
networks, drawing from seminal works in neuroscience and
recent advancements in computational models. By addressing
the structural and operational limitations of traditional ANNs,
ANT aims to bridge the gap between artificial and biological
cognitive systems, paving the way for more sophisticated and
versatile Al agents.

III. METHODOLOGY

ANT seeks to improve on existing neural structures primar-
ily through a fundamental expansion in the hypothesis space



of ANNSs, in particular lifting the restrictions which reqire
unidirectional flow of information and gradients through the
network and that disallow the storage of a dynamic state as a
prior to the model output.

A. Graph initialization

ANT is constructed with a randomly locally connected
directed graph G of size |G| = n. Each vertex v; has weight
w;, bias b;, and activation o; properties with learnable w;, b;,
performing a similar mapping from the inputs of a neuron to
it’s outputs compared to ANNSs. For the graph, there are two
sets of vertices designated as input and outputs to the network,
respectively, representing the sensory and motor components
to the network.
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Figure 1. Example ANN architecture (baseline)
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Figure 2. Example ANT architecture (initialization)
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Figure 3. Subgraph of C. elegans neural topology [16]

This structure, while not an exact replica of any particular
neural topology, when combined with the genetic algorithm
(see III.C) provides a superset of the hypothesis class which

can mimic the neural circuit structures found in biological
networks by forming recurrent, potentially cyclic dynamic
relationships between neurons.

B. Update and Learning Mechanism

Unlike conventional artificial neural networks, ANT, like its
biological counterpart, behaves dynamically across time. At
each time step t a set of inputs X of length ¢ are distributed
to each of ¢ input neurons (where ¢ is predefined at network
initialization). Then, each neuron v; simultaneously computes
y; = z;w; + b; and applies o; on y;, where z; at time ¢ is the
outputs of inbound neurons at ¢ —1, and distributes each vector
component of y; through corresponding outbound edges. The
output Y of the network is the concatenated single-dimensional
outputs of each designated output neuron.

Recent advances in the study of biological neuron interac-
tions reveal complex learning mechanisms within individual
dendritic connections and synaptic clefts, as well as the known
properties of the soma [26] [27] [28] [29]. With this, we
model individual neurons as multiple perceptron relationships
between inputs and outputs, rather than a more conventional
single perceptron approach. Practically, each neuron then has
a two-dimensional weight matrix with a 1-dimensional bias
vector.

Because ANT is designed to behave dynamically and learn
continually, the gradient computation must be compatible with
online updates as well. An ANN performs a gradient update
given a loss function L by passing backward the product of
an upstream jacobian OL/Ox; with locally computed input
gradients to compute a partial derivative of w;, b;, and x; with
respect to loss. For w;,
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in a network where v; — v; — --- — v; — v,, However, a
conventional backpropagation approach from ANNs mandates
an acyclic graph to eliminate a circular dependency causing
infinite gradient chains, preventing precomputing backprop-
agation chains. Therefore, gradients must be dynamically
passed backward in a similar manner to forward propagation,
where only one gradient passing “step” occurs for each ¢. This
links the dependence of each partial gradient component of
the chain to the time step at which it was computed, barring
cancellation in the chain-rule expansion for L, w;:
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To mathematically satisfy this approach, we can closely
approximate the gradient chain by instead only episodically
updating network weights at relatively distant time intervals,
removing the weight parameters’ dependence on time. Then,
for any adjacent neurons ¢ — j passing gradients backward at
t,t + 1, respectively,
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Applying this principle to the full gradient computation, ANT
achieves a parallelizable dynamically learning algorithm, sim-
ilar to biological networks.’

C. Evolution

To further emulate its biological counterpart, ANT also
performs a genetic search over the hyperparameter space.
Specifically, ANT “evolves” by modifying the connectivity
and neuron count of the network. For each mutation and with
uniform F ~ Unif(0, 1), edges are added with probability F <
p- n(sin and removed with probability E < p, - %,
where e,n are the current number of edges and neurons,
respectively, and p, is a hyperparameter. The number of new
neurons is defined by N ~ Pois(p,,) with hyperparameter p,,.°
The evolution of ANT allows for large and complex networks
to form, fully taking advantage of the broader search space
enabled by the graph structure. Further, the ability of the
genetic algorithm to change the topology of ANT generates
selectively faster information travel between areas of the
network where a locally connected network would otherwise
require several time steps to propagate information. This
selective minimization of the degrees of separation between
distal vertices is important for the learning speed of the at-large
network, quick reactionary mechanisms, and other properties
of biological circuits [8] [13].

D. Reinforcement Learning

Due to the dynamic nature of ANT coupled with the objec-
tive of pursuing generalized intelligence, we use reinforcement
learning (RL) as a medium of comparison between ANT
and ANNs. RL allows us to pursue an ultimate goal of
producing continual real-world learning by investigating the

4An example of such an activation is an (x) = ntanh() with hyperpa-
rameter n, where ar () = x as n — 0o

SWe use the RMSProp [19] as a parameter optimizer for this work.

6We have not implemented neuron pruning, but this could also be included
as a random variable or based on activity.

Fig. 1. Evolution of a small ANT.

Fig. 2. Evolution of a large ANT. Inter-neuron activity is indicated on the
“viridis” color scale.



behaviors and convergence properties of ANT against ANNs in
complex environments graphically, as well as introduce agents
to new environments or alterations in underlying properties of
different environments.

Within RL, ANT computes actions unconventionally com-
pared to most other DQN or deep policy networks by taking
only the maximum likelihood action. Instead of mandating
exploration with a user- or agent-controlled hyperparameter,
we found exploration emergent from the dynamic structure of
ANT. Intuitively, due to the variability of the input space, ANT
cannot overfit in a traditional sense by forming explicit input-
output mappings. In other machine learning settings this is a
challenge due to ill-defined mappings, but in RL this leads to
implicit exploration during the continual development of the
network’s internal state.

We also use the REINFORCE (REward Increment = Non-
negative Factor x Offset Reinforcement x Characteristic Eli-
gibility) [23] policy gradient method used widely across RL.
We apply REINFORCE in a semi-online setting. As described
before, gradient computation must occur in real time due
to the time-dependence of the dynamically changing internal
state. To comply with this constraint, we accumulate gradient-
reward pairs for T time steps before applying REINFORCE
to compute a gradient for the policy:

T

T
Z Vo log mg(at|st) - Z ARty )

t=0 k=t
with discount factor « at each T interval where 7" >> 1.

E. Experimental Setup

Our experiments are predicated on assessing ANT’s ability
to converge both more quickly and adaptively compared to
its ANN counterpart. To assess this, we designed an ANN
analogous to ANT with identical weight initializers, mutation
parameters, neural activations, and RL integration but within a
layered, non-stateful structure. We compare the two with a pair
of discrete action space parametrized reinforcement learning
environments from Gym: Acrobot and Lunar Lander.” Acrobot
has a double pendulum with agent able to control the force
applied to the top axle. The agent is tasked with applying a
sequence of forces such that the end of the double pendulum
exceeds a particular height. The agent receives —1 reward at
each time step it does not complete the task. Lunar Lander
consists of a lunar module initialized with a high position and
some velocity, where the agent is tasked to apply leftward,
rightward, upward, or no thrust to land gracefully between
two target flags positioned on noisy terrain.

We complement these environments with the Context Adap-
tive Reinforcement Library (CARL) [22], a modification of
Gym and several other RL libraries which allows control
over environment physics parameters for use in evaluating the
generalizability of RL models. In their paper, they posit that

7Gym is an open-source Python library originally developed by OpenAl
and now maintained by the Farama Foundation.

Fig. 3. Acrobot (left) and Lunar Lander (right).

if RL models are able to more quickly and reliably converge
to high-reward solutions in environments which have object
properties that vary, then they are more broadly capable. While
imperfect for investigating the capacity for ANT to achieve a
general intelligence in cognitive sense, at the scale of only
a few dozen neurons we rationalize that quick convergence
and adaptability could translate to more complex reasoning
behavior for larger-scale, more refined topologies.

To train parameter efficiency with respect to convergence
speed and robustness, we create a “small” version of each
model with 36 neurons and roughly ~ 450 trainable pa-
rameters and a “large” version of each with 66 neurons
and ~1170 trainable parameters. In both cases, the ANN is
structured as an MLP with 2 hidden layers while the ANT
has a connectivity parameter p. of 1.4, each with input and
output sizes equal to the observation and action spaces of each
respective environment.

We first compare the efficacy of an isolated gradient de-
scent approach for training in each environment. For each
experiment, we run 1000 episodes of the environment and
report the best result across a search of 20 unique learning
rate parameters.

We run a similar experiment to test the joint gradient
descent-evolutionary learning algorithm. For these experi-
ments, we fix the two initial network structures as in the
previous experiment. For 20 evolutionary episodes, we first
collect the top K = 5 networks from the previous episode,
perform perturbations with a neuron addition rate regulated by
N ~ Pois(0.5), an edge mutation rate with P ~Binom(0.05),
and a weight perturbation with W ~ {N(0,1 x 107%)}¢_;
for a network with e edges.® Each network is then trained
for 100 episodes, after which an average reward is computed
to determine the top-k. Below is an illustration of the best
performing evolutionary path for the ANN and ANT in each
environment, as well as close-performing neighbors.

Using the CARL environments, we design an experiment for
each environment to assess relative generalizability of ANNs
and ANTs. There are two primary characteristics that will
measure this: convergence robustness and adaptability. These
principles are predicated on the idea that a more generally

8We maintain the same graph properties for the ANN when evolving, only
adding vertices and edges to layers as opposed to randomly connecting each
to the existing graph as in ANT evolution.



ANN vs. ANT Gradient Descent in Acrobot
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ANN vs. ANT Gradient Descent in Lunar Lander
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Fig. 4. Single training run of ANN and ANT in Acrobot (top) and Lunar
Lander (bottom) with only gradient descent, not necessarily representative of
relative performance.

intelligent agent is better able to reason within a complex
environment and can more quickly adapt to new environments.

To test overall convergence robustness, we float the lengths
and vertex masses for each of the pendulums in the Acrobot
double pendulum with a uniform distribution ranging from a
50% decrease to a 50% increase for each default value. We
then run the same evolutionary experiments on the small and
large versions of each model as defined above, where for each
episode these distributions are resampled to give new physics
parameters.

We test adaptability by evolving an ANN and ANT in
Lunar Lander with Earth’s gravity (9.81 m/s?) until each
reaches an average test reward of 50. Then, only allowing
gradient descent, we evaluate the time to convergence in
an environment with the gravity of Mars (3.71 m/s?). Each
network will have to adapt in the way they apply thrust to the
module while observing an entirely new action-state pairing
mechanism.

F. Robotics

Operating from the Reward is Enough hypothesis, which
posits that all aspects of intelligence subserve reward max-

ANN vs. ANT Evolution in Acrobot
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Fig. 5. Single training run of ANN and ANT in Acrobot (top) and
Lunar Lander (bottom) with evolution and gradient descent, not necessarily
representative of relative performance.

x

Fig. 6. Sample Acrobot initializations with CARL

imization by an agent acting in its environment, ANT can
behave analogously to animals through policy optimization
[10]. Conversely, this implies that our proposed agent can
develop multiple aspects of intelligent behavior given a simple
design of such a reward function.

We developed both a virtual and physical agent with
analogous environmental setups, where an agent navigates a
2D environment populated with obstacles and food. Upon
reaching a food object, the agent receives a reward. The



food-finding reward is intended to incentivize the agent to
efficiently navigate its environment to move toward the food
object. In generalizing the environment to a small sensor-
based observation space, the model forgoes assumptions about
its environment and embraces continual learning. This further
enables the agent to adapt to a non-stationary environment.
At each timestep, the agent makes a partial observation of its
state, formulated as a 2-dimensional feature vector encoding
the distance to the nearest object or obstacle in front of the
agent as well as a boolean value indicating if food is present
in the agent’s field of vision. The agent can take 5 possible
actions at each timestep: wait, rotate right, rotate left, move
forward, or move backward.

IV. RESULTS

We aim to demonstrate that, while conventional artificial
neural networks are unable to converge quickly for small
parameter counts, ANT can converge both quickly and ro-
bustly with high sample and parameter efficiency. We will first
represent a sample learning trajectory for each experiment,
then establish the rate of convergence.

A. Baseline Reinforcement Learning

With ANN-small and ANT-small as networks defined with
36 neurons and 66 neurons, respectively, we take the mean
final reward over 100 different training runs with each model

type.

Mean Convergence after 100 Episodes in Acrobot
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Fig. 7. ANN and ANT 100 episode convergence for Acrobot.

In Figure IV-A, this experiment is run on Acrobot with an
expected optimal total reward of approximately 140 for a 200

time step game,” with a sufficiently positive result exceeding
100 and a negative result (unable to complete the task) as 0.
For models trained only on gradient descent, ANT outperforms
both the small and large ANNs significantly, demonstrating
an ability to complete the game at remarkably low parameter
counts for a quick training cycle and even better convergence
for the large model. Given a genetic algorithm with SGD,
ANT converges to a near-optimal solution uniformly for both
the small and large model, significantly outpacing their ANN
counterparts.

Mean Convergence after 100 Episodes in Lunar Lander
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Fig. 8. ANN and ANT 100 episode convergence for Lunar Lander.

For a more challenging game like Lunar Lander with a 50%
larger action and observation space on a more complex 2D
game, we see that while ANT-small and each of the larger
models fail to converge to an optimal solution (above 0) in 100
time steps, ANT again routinely approaches this reward using
the combined genetic-gradient descent algorithm, with the 1o
error bar in for both the small and large model indicating
that around 30-40% of the trained models achieved an optimal
solution.

B. CARL

In the first CARL experiment, we find that ANT is resound-
ingly more robust in converging quickly, showing minimal
performance drop-off even for the smaller 36 neuron model.

9 Acrobot penalizes each non-successful step with a reward of —1, so for
illustrative clarity, we report the reward as 200 + total reward, where each
episode is 200 time steps, so as to avoid strictly negative rewards. We do not
do this for LunarLander.



Conversely, Figure 9 shows that both ANNs converge sig-
nificantly less reliably in the CARL environment, with the
small ANN almost always unable to converge within 100
epochs even with a genetic algorithm. The 66-neuron ANT-
large network has no significant difference in convergence
between the base and CARL acrobot environments.

Mean Convergence after 100 Episodes in Acrobot: Base vs. CARL
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Fig. 9. ANN and ANT trained on static physics variables vs. randomized.

Figure 9 illustrates a broader characteristic of the ANT for-
mulation. Because of a heightened complexity of the hypoth-
esis class and dynamic internals, ANT is able to more reliably
fit more complicated environments while being equally com-
putationally performant compared to ANNs. This is further
reinforced by the following Lunar Lander experiment, where
we assess the quality of generalization outside of the training
regime for each ANN and ANT model.

For the second Lunar Lander-based simulations, Figure 10
shows that while the ANN requires nearly 100 episodes to
return to an optimal solution, the ANTSs are able to maintain
a near-optimal solution even within the new environment
(reward only drops by 50, on average).

C. Robot Performance

Despite some successes in simulation, the translation to a
physical agent failed due to the narrow observation space and
discrepancies between the simulated and real-world environ-
ments.

For the physical agent, the ultrasonic sensor was prone to
inconsistent distance measurements, and the computer vision
algorithm frequently failed to detect the food or misidentified
other objects as food. These inaccuracies led to suboptimal
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Fig. 10. ANN and ANT ability to adapt to gravity on Mars: 20 Earth-trained
models.

decision-making and performance failures. Our attempts to
rectify these issues through a hard-coded algorithm to locate
food were unsuccessful, with a success rate of 20%. The
failure of a hard-coded algorithm underscores that the per-
formance failures are, in large part, due to limitations of the
physical agent itself rather than the underlying network. This
highlights the need for an expanded observation space, which
could include integrating multiple sensors to take distance
measurements at various angles.

Similarly, the ANT network was first trained in a controlled
virtual environment, which does not adequately capture the
complex dynamics of the physical world. Sensor inconsisten-
cies, variations in motor functions, and dynamic environment
elements were not modeled in the simulation and warrant a
more intricate simulation environment. Incorporating Partially
Observable Markov Decision Processes (POMDPs) could be
beneficial in modeling the uncertainties and variabilities in-
herent in real-world interactions, leading to a more robust and
adaptable agent.

D. Performance and Scalability

Due to the dynamic nature of ANT, the complexity of the
update procedure runs linearly with respect to the number of
neurons, while suboperations within neurons require a linear
compute time with respect to the number of connections,
leading to a generally quadratic overall compute time. How-
ever, ANT is highly parallelizable, with each neuron operation
occurring independently of other neurons and with genetic
iterations that also run independently of other trials.

ANT is currently written in Python, which has a Global
Interpreter Lock (GIL) preventing process threading. We antic-
ipate that a raw C/C++ implementation with threaded neuron
operations would be even more computationally advantageous.

As opposed to the few large matrix compositions involved
in ANN forward and backward propagation, most of the com-
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Fig. 11. Speed of ANT with connectivity ﬁ (widthwise-expanded ANN).
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Fig. 12. Speed of ANT with connectivity ﬁ (depthwise-expanded ANN).

putations in ANT, while parallelizable, involve many relatively
small matrix operations. This imposes a necessary bound on
the compute speed of ANT relative to conventional networks—
where ANNSs can use inbuilt matrix composition optimizations
common in today’s Graphics Processing Units (GPUs), these
improvements aren’t reflected to nearly the same degree on
smaller compositions.

However, ANT’s computation is invariant of a notion of
network “depth.” Where ANNSs require the sequential compu-
tation of outputs and gradient depthwise, ANT can compute
all gradients in parallel. When shifting the baseline to instead
make deeper instead of wider networks, reducing the optimiz-
ability of the ANN gradient calculation, ANT becomes a much
more advantageous choice:

More experimentation with a more optimized code and
better hardware is required to be conclusive on the speed
of ANN compared to ANT, though it is likely that the
computational tradeoff is problem-specific.

V. SUMMARY AND CONCLUSION

A. Limitations

There are several limitations of the ANT formulation which
complicate its use in most machine learning contexts. Because
it is a dynamic network, ANT is not known to be capable
of making distinct input-output functional pairings as in the

context of supervised learning. In fact, in all settings which
involve sharp discontinuities, heavy discretization of input, or
non-temporal input, ANT’s formulation seems to preclude it
from use.'”

Further, not studied heavily in this paper is the sensitivity
of ANT to initial conditions. As desired network complexity
increases, the hyperparameter space grows exponentially as the
total number of possible graph structures itself increases at a
rate of 2" where, as we have seen anecdotally, different graph
constructions can yield significantly different convergence
times. In most cases for particular RL settings, ANT would
fail to converge completely given some graph initialization via
stochastic gradient descent. This requires the use of a genetic
algorithm that, though optimizable, is a much more brute-
force approach toward searching for viable network structures
and may not be computationally feasible for large parameter
spaces.

B. Future Work

ANT is a novel neural network formulation which we
believe shows significant promise for applications in RL.

The properties of ANT remain largely unstudied. Although
we have investigated small-scale applications of ANT in RL
studies in this paper, scaled RL applications and alternative
machine learning applications are unknown. It is possible that
scaling ANT is computationally difficult, however if the results
at small scales indicate a similar convergence speeds for higher
parameter counts then it would be worthwhile, especially
if transfer learning were possible. Alternatively, like many
dynamic networks, the convergence properties of ANT may
be revealing in studying how biological neural networks may
retain information, such as the memory-retention properties of
Hopfield networks [24].

We also haven’t investigated the graphs created by ANT’s
evolutionary algorithm. It is likely that they or their internal
dynamics have emergent characteristics that could inform fu-
ture development of ANT or other learning dynamic networks.

C. Conclusion

We have introduced the Artificial Neural Topology (ANT),
a novel neural network formulation distinct from the conven-
tional artificial neural networks which have dominated ML
circles for decades. ANT’s formulation allows for a unique
combination of effective gradient-based and genetic optimiza-
tion. We showed that not only can ANTs perform as well
given equal conditions compared to ANNs in reinforcement
learning tasks, but also that ANTs have more robust and
generalizable convergence tendencies than ANNs. While most
experimentation was done on a small scale, we illustrate
properties that are fundamental to the network and suggest
potential for broader reasoning capabilities in applications of
larger networks, suggesting a new way forward for creating
generally intelligent agents.

101t js possible that supervised tasks would work if presented in an RL-like
setting.



ANT is aimed as a critical unifying subcomponent of
the broader mission toward unifying divergent branches of
machine learning research. ANT is designed as an artificial
analog to the prefrontal cortex, where in each environment
we give it automatic perfect control over senses and motor
movement. In an embodied setting, this would translate to
ANT serving as a central processor for peripheral task-specific
models (computer vision, robotics models, etc.) conjoined
through a latent space, analogous to how biological organisms
are structured.

While the pursuit of generalized reasoning is an important
goal in and of itself, which we believe is achieved by ANT
in part with a pseudo-cognitive approach by characterizing
qualities of biological neural networks, it is equally important
to consider how an embodied approach and improvements to
the reinforcement learning mechanisms are critical to making
agents that can exist and act in the real world.
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